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Abstract
Reports from state health departments and the Centers for Disease Control and Prevention

indicate that the annual number of reported human vibriosis cases in New England has

increased in the past decade. Concurrently, there has been a shift in both the spatial distri-

bution and seasonal detection of Vibrio spp. throughout the region based on limited monitor-

ing data. To determine environmental factors that may underlie these emerging conditions,

this study focuses on a long-term database of Vibrio parahaemolyticus concentrations in
oyster samples generated from data collected from the Great Bay Estuary, New Hampshire

over a period of seven consecutive years. Oyster samples from two distinct sites were ana-

lyzed for V. parahaemolyticus abundance, noting significant relationships with various biotic

and abiotic factors measured during the same period of study. We developed a predictive

modeling tool capable of estimating the likelihood of V. parahaemolyticus presence in

coastal New Hampshire oysters. Results show that the inclusion of chlorophyll a concentra-
tion to an empirical model otherwise employing only temperature and salinity variables,

offers improved predictive capability for modeling the likelihood of V. parahaemolyticus in
the Great Bay Estuary.

Introduction
Despite the cool coastal water temperatures characteristic of the New England states in
Northeast United States, V. parahaemolyticus and other potentially pathogenic Vibrio spp.
are recurrently detected in regional coastal ecosystems during the warm summer months,
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and essentially non-detectable during cold winter months [1–8]. V. parahaemolyticus is a
free-living, halophilic, gram-negative bacterium found in coastal environments worldwide
[9–11]. With an estimated 30,000 cases per year, V. parahaemolyticus is the most common
bacterial source of seafood-borne gastrointestinal illness in the United States [12], and the
incidence of V. parahaemolyticus cases nationwide is increasing [13]. The incidence of vibrio-
sis in New England follows the seasonality of Vibrio spp. abundance in coastal waters, and
species such as V. parahaemolyticus are regularly detected in shellfish harvested for con-
sumption during warm months [14–18]. Though reported cases of human Vibrio infection
are relatively infrequent, reports from state health departments [19–22] and the Centers for
Disease Control and Prevention (CDC; [23]) indicate the annual number of reported human
Vibrio infections in the New England region dramatically increased in the past decade (Fig
1), especially in Massachusetts and Connecticut where there were a combined 5 cases in 2000
compared to 147 cases in 2013. Several outbreaks of V. parahaemolyticus illnesses were asso-
ciated with warmer than usual regional ocean temperatures and the regional invasion of
ST36-O4:K12 strains [23–25]. The increase in the frequency of outbreaks and reported infec-
tions has caused harvest closures and economic losses to the shellfish industry, and led all
New England states to initiate V. parahaemolyticusmanagement plans [26]. Robust forecast-
ing of Vibrio presence, concentrations and associated environmental conditions would
greatly aid the management of shellfish harvesting for both preventing disease and maintain-
ing a healthy shellfish industry.

The relationship between total abundance of V. parahaemolyticus and risk of disease to
shellfish consumers has been documented [12], yet it remains an evolving question given
recent insights into the nature of pathogenic strain emergence [24,25,27]. There are several ref-
erence V. parahaemolyticus concentrations that imply risk thresholds, including the level to
which post-harvest shellfish processing approaches need to reach to be considered effective [30
MPN g-1; [28]], and the Health Canada limit for minimal risk conditions [100 MPN g-1; [29]].
Thus, public health risk concerns remain tied to V. parahaemolyticus concentrations as a basis
for management approaches to protect public health, although actual risk is associated not
only with pathogenic strains, but also, dose and immune condition of the consumer, and hence
the relationship of risk to total V. parahaemolyticus concentrations has limitations [1]. V. para-
haemolyticus strains containing virulence-associated markers are also rare in the environment,
and this is especially true for the Great Bay estuary [25], making it necessary to base models on
total V. parahaemolyticus detection.

In New England, where Vibrio spp. are an increasing public health concern, several studies
[1,3–5,8] have documented the relationship between bacterial levels and environmental condi-
tions. Whereas the environmental range of conditions that dictate V. parahaemolyticus abun-
dance can differ by study region [30], they generally increase in abundance when water
temperatures exceed 15°C and with salinity between 5 and 25 ppt [5,15]. These factors, and
temperature in particular, also influence the pathogenic potential of different V. parahaemoly-
ticus strains [31]. Other environmental measures have also been associated with variations in
V. parahaemolyticus levels, including turbidity, suspended sediments, nutrients, and dissolved
organic carbon [5,32,33]. Furthermore, V. parahaemolyticus populations are influenced by
estuarine microbial communities, particularly in association with plankton where chitin and
organic exudates are enriched and available for stimulating rapidly growing V. parahaemolyti-
cus populations [34–37].

The main research objectives of this present study are to first advance the understanding
of the associations between V. parahaemolyticus and environmental parameters, and second,
to develop algorithms capable of predicting the likelihood of V. parahaemolyticus presence
based on those associations in the Great Bay Estuary. Here we present empirical algorithms

Modeling Conditions for Vibrio parahaemolyticus in Great Bay Estuary, New Hampshire

PLOS ONE | DOI:10.1371/journal.pone.0155018 May 4, 2016 2 / 15

New Hampshire Sea Grant program (http://seagrant.
unh.edu/) grants R/CE-137, R/SSS-2, R/HCE- 3. The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

http://seagrant.unh.edu/
http://seagrant.unh.edu/


for estimating the probability of V. parahaemolyticus presence in the Great Bay Estuary,
NH. This study builds upon existing environmentally-based pathogen prediction models
[14,18,38–41] by incorporating not only abiotic but also biotic-related predictors to estimate
V. parahaemolyticus presence in the coastal waters of the Northeast United States. Successful
development of a V. parahaemolyticus likelihood algorithm will enable future development
of more detailed and quantitative Vibrio spp. models capable of providing useful information
for managers, researchers, and public health practitioners in the Gulf of Maine, New England
and beyond.

Fig 1. Annual cases of vibriosis in humans for Maine (ME), Massachusetts (MA), New Hampshire (NH), and Connecticut (CT) for 2000 through
2013. Zero cases are represented by missing vertical bars. Identified species include V. parahaemolyticus, V. vulnificus, V. cholerae, V. alginolyticus, V.
fluvialis, and ‘unknown’.

doi:10.1371/journal.pone.0155018.g001
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Materials and Methods

Study Area
Located within the Gulf of Maine watershed, the Great Bay Estuary (GBE) extends inland from
the mouth of the Piscataqua River near Kittery, ME through Little Bay and eventually into
Great Bay (~25 km; Fig 2). The GBE has deep, narrow channels with strong tidal currents, and
wide, shallow mudflats. The physical transport regime of the Great Bay Estuary follows the
classical estuarine circulation model for drowned river valley estuaries. Five tributaries, the
Lamprey, Squamscott, Oyster, Bellamy, and Winnicut rivers account for the freshwater inflow
into the Great Bay and Little Bay. Water surface temperatures range from local wintertime
lows of<0°C to summertime highs of>29°C. Furthermore, salinity varies both seasonally and
spatially throughout the estuary with values ranging from 0 to 28 ppt. The two study sites, Oys-
ter River and Nannie Island, represent tributary and open bay conditions, respectively, and
have been shown to vary in Vibrio spp. presence and abundance [5].

in situ Collection and Sampling Procedures
American oysters (Crassostrea virginica) were obtained from 2007 through 2013 from two
study sites in the Great Bay Estuary (Fig 2). Pooled samples of 12 live wild oysters were col-
lected bi-weekly during warmer season (June-September) and monthly during the colder sea-
son (October-May). Oysters, collected using oyster tongs from boats over a one hour time
period within 0.5 h of low tide at each site, were immediately stored in coolers with ice packs
on-board for transport to the laboratory. All samples were collected within 45 minutes of low
tide to ensure consistency of sampling conditions between sites on each sample data and
between sample dates. A total of 143 in situ samples were collected for bacteriological analysis
that was carried out within 2 to 4 hours at the University of New Hampshire.

Environmental data used in the statistical analyses were collected as part of the Great Bay
National Estuarine Research Reserve (GBNERR) SystemWide Monitoring Program (SWMP).
Temperature (Temp), salinity (Saln), dissolved oxygen (DO), pH, and turbidity (Turb) were
collected by datasondes deployed in the Great Bay from April-December with 15 minute read-
ings of an array of environmental parameters (Table 1). Precipitation data (Rain) was acquired
from several weather stations (http://cdmo.baruch.sc.edu/get/export.cfm; http://www.weather.
unh.edu) in the Great Bay region. Surface (0.5 m depth) water temperature, salinity, dissolved
oxygen, and pH data were also measured using YSI 6600 and EXO data sondes (YSI Inc., Yel-
low Springs, Ohio) at the time of sampling to check the accuracy of datasonde readings. In
addition, analysis included monthly nutrient data, including chlorophyll a (Chla), phosphate
(PO4), and total dissolved nitrogen (TDN), were collected by the GBNERR SWMP (http://
cdmo.baruch.sc.edu/get/export.cfm). Chlorophyll a was determined using EPAMethod 445.0
[42]. No specific permissions were required for retrieval of environmental data at either loca-
tion as the GBNERR SWMP provides free publicly available data. The fieldwork performed in
this study did not involve endangered or protected species.

V. parahaemolyticus Isolation and Identification
After the outer shells were scrubbed and cleaned, and the oysters shucked aseptically with a
sterilized oyster knife, pooled tissue from 12 oysters was processed for enumeration of V. para-
haemolyticus via a 3-tube MPN enrichment method following the FDA Bacteriological Analyti-
cal Manual (BAM; [43]), coupled with culture-based and polymerase chain reaction (PCR)
methods used to confirm the presence of V. parahaemolyticus [44]. The oysters were added to
a sterile beaker (liquor and meat), weighed and diluted with buffered peptone water (BPW: 10
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Fig 2. Map of Great Bay Estuary: white circles represent the sampling stations for this study.

doi:10.1371/journal.pone.0155018.g002

Modeling Conditions for Vibrio parahaemolyticus in Great Bay Estuary, New Hampshire

PLOS ONE | DOI:10.1371/journal.pone.0155018 May 4, 2016 5 / 15



g peptone, 5 g NaCl, 3.5 g Na2HPO4, 1.5 g KH2PO4 per L) and homogenized for 30 seconds on
low speed and 60 seconds on high speed. From 2007–2010, ten grams of homogenate was
added to three tubes containing 10 mL of alkaline peptone water (APW, pH 8.6, 1% NaCl), and
1 gram of homogenate was added into each of three separate APW tubes and into a separate
dilution tube containing 9 mL of BPW. From 2011–2013, ten grams of homogenate was added
to three tubes containing 10 mL of APW as the first dilution step. A serial 10-fold dilution
series in BPW tubes down to 10−6 was used to ensure detection of high concentrations during
warm months. One mL aliquots of diluted homogenate were added to 9 mL of APW in three
tubes at each dilution and all tubes were incubated at 37°C overnight (18–20 hours).

APW tubes that were turbid after incubation were scored as positive for growth and
streaked onto selective agar. From 2007–2010, cultures were quadrant streaked to TCBS agar
(BD, Franklin Lakes, NJ), whereas from 2011–2013, APW positive tubes were quadrant
streaked onto CHROMagar Vibrio (CHROMagar, Paris, France); both media were incubated
at 37°C for 18–20 hours. Putative V. parahaemolyticus isolates (Sucrose negative colonies-
TCBS; purple colonies-CHROMagar Vibrio) were further isolated onto tryptic soy agar (TSA;
BD) and incubated at room temperature for 18–20 hours.

Isolates from the APW enrichment tubes that were putatively identified as V. parahaemoly-
ticus based on colony color were subsequently subjected to species identification by a standard
PCR-based assay using the species-specific gene (tlh) to determine V. parahaemolyticusMPN
values [44]. The putative isolates from TCBS or CHROMagar Vibrio, were re-streaked onto
TSA agar. Colonies were suspended in 1 mL Molecular Biology Grade Water (Phenix Research
Products), then boiled at 100°C for 10 minutes and centrifuged for 5 minutes at 8000rpm [44].
A 2μL sample of the supernatant was added to 13 μL Mastermix in 0.2mL PCR tube. The Mas-
termix was composed of 1X iQSupermix (Bio-Rad, Hercules, CA) containing dNTPs, 25 U/ml
iTaq DNA polymerase, 3 mMMgCl2 and then 125 nM of species-specific tlh primers [44] and
nuclease free water to a total volume of 25 μL. For efficiency, some PCR assays were scaled
down to 10 μL. The PCR conditions were conducted as described previously [44]. The presence
of the correct size amplicon (tlh) was determined by electrophoretic separation on 1.2% aga-
rose gel with addition of Gel Red (Phenix Research Products, Candler, NC) under UV light
and comparison to a standard strain (F11-3A) to confirm the presence of V. parahaemolyticus
in any given MPN tube. MPN concentrations for each sample were then determined based on
the presence of confirmed V. parahaemolyticus in MPN tubes based on the FDA BAM [43].
The limit of detection (LOD) was 0.018 MPN g-l.

Statistical Methods
Datasonde water quality data from the 12 hours prior to oyster sampling were averaged to pro-
vide tide stage integrated data reflecting conditions that could affect V. parahaemolyticus con-
centrations, and to ensure dataset consistency for empirical model development. For purposes
of temporal binning and ecological lag times, mean cumulative surface temperature and salin-
ity observations were calculated in 12-hour (~1 tidal cycle) time increments.

Table 1. Correlation coefficients for log-transformed V. parahaemolyticus abundance and selected environmental variables.

Temp Saln DO pH Turb TDN Chla PO4 Rain

R 0.49 0.27 0.38 0.12 0.13 0.14 0.29 0.12 0.00

p-value 2.3E-09 1.8E-03 6.1E-06 0.17 0.14 0.10 8.6E-04 0.18 0.98

Abbreviations correspond to environmental parameter names in rows. Significant correlations are at the alpha (p<0.05) level.

doi:10.1371/journal.pone.0155018.t001
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Correlations between V. parahaemolyticus concentrations and in situ environmental data
were calculated for all months at all sampling locations. The measure of linear association
between log-transformed V. parahaemolyticus concentrations and paired environmental
parameter data were calculated by Pearson’s product-moment correlation (R; [45]), with sig-
nificant relationships determined by the degrees of freedom (n = 125) at an alpha level of 0.05.
For the purposes of data normality, all MPN g-1 values for V. parahaemolyticus concentrations
were log10 transformed prior to statistical analysis.

For the purposes of model fit and observation of data trends within the normal range of V.
parahaemolyticus concentrations, outlying, relatively high V. parahaemolyticus concentration
data points (determined by the absolute value of 2 times the standard deviation) were excluded
from the following correlation analysis and model development and validation. Additional
data points in which concurrent environmental data were not available were also excluded
from the correlation analysis as well as model development and validation.

V. parahaemolyticus probability statistics. Generalized Linear Models (GLM; [46]) were
used to determine the association of various biotic and abiotic factors with characteristics of V.
parahaemolyticus distribution, namely probability of presence in the Great Bay Estuary. Fol-
lowing the methods of Urquhart et al. (2015) and safe post-harvest safety levels [28], observa-
tional bacteria data in oysters were transformed to binary presence/absence: cell count> 30
MPN g-1 � presence, cell count< or = 30 MPN g-1 � absence. Stepwise regression based on
Akaike’s Information Criterion (AIC; [47]) was used to select the best-fit likelihood model, in
which each explanatory variable was entered sequentially into the model, and selected variables
were retained only if significant. The GLM algorithms were applied in the logistic (“logit”)
form and statistical analysis was performed using the stats (version 2.14.0) R package [46] car-
ried out in the R Statistical Software, version 3.1.2 [48]. For correlation analysis and model
evaluation, significance was set at an alpha level of 0.05. To assess model predictive skill, the
resulting top two models of the stepwise selection were tested in an out-of-bag [49] cross vali-
dation analysis. To ensure correct binary classification, a 0.5 prediction point was used. Final
model selection was based on the optimization of five model assessment error indices: true pos-
itive rate (sensitivity as a percent; TPR), true negative rate (specificity as a percent; TNR), posi-
tive predictive value (PPV), negative predictive value (NPV), and Matthews Correlation
Coefficient (MCC; [50]).

Results

Detection and Trends
V. parahaemolyticus was detected seasonally in oysters each year at both sites (Fig 3A) and
there was no effect of sampling location on V. parahaemolyticus concentration (p = 0.139). V.
parahaemolyticus was detected (=> 0.018 MPN g-1) in 91 of 140 (65%) oyster samples, with
concentrations ranging from 0.04 MPN g-1 to 4,600 MPN g-1. Detection during cold-water
months (October through May) was 55% whereas warm-water month (June through Septem-
ber) detection was 72%. For most years, higher concentrations of bacteria in the GBE were first
detected beginning in late May to June, after water temperatures rose to above ~15°C (Fig 3B).
In oyster samples with V. parahaemolyticus detected, the median and geometric mean counts
were 7.3 MPN g-1 and 12.3 MPN g-1, respectively. Thirty five (35%) of the samples exceeded 30
MPN g-1, a level below which oysters subject to post-harvest processing are considered safe
[28]. As we expected, the levels of total V. parahaemolyticus bacteria detected in NH oysters
are slightly lower, yet comparable to densities (103−104 MPN g-1) found in shellfish from other
coastal regions [16,32,51–53]. Seven outlying data points and additional eight data points in
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Fig 3. Boxplot showing V. parahaemolyticus concentration (MPN g-1) for station and year (A), and for
station andmonth (B) for Oyster River (OR) and Nannie Island (NI). Hollow circles represent outliers;
dashed vertical lines illustrate ICQ range; bold horizontal bars represent median Vp concentration value.

doi:10.1371/journal.pone.0155018.g003
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which concurrent environmental data were not available were excluded from correlation analy-
sis as well as model development and validation.

Influence of Environmental Factors
Higher mean water temperature over the 60 hours prior to sampling was correlated with
increased V. parahaemolyticus detection in oyster samples collected during all months (April
through December). The median temperature when bacteria were detected was 19.7°C, com-
pared to 17.2°C when bacteria were not detected. The seasonal trends in the onset of bacterial
presence are similar to occurrences found Rhode Island [8] and the Chesapeake Bay [18,38,39],
where V. parahaemolyticus densities increased in oysters following sustained high water tem-
peratures. For salinity, an overall increase in mean values over the 72 hours prior to sampling
was also linked to higher bacteria presence in oysters (24.4 ppt when present, 20.5 ppt when
absent).

Log-transformed V. parahaemolyticus concentrations (MPN g-1) significantly correlated
with mean water temperature (°C) over the previous 60 hours, mean salinity (ppt) over the pre-
vious 72 hours, mean dissolved oxygen over the previous 12 hours (mg/L), total dissolved
nitrogen (mg/L), and chlorophyll a (μg/L) during all months (Table 1). Although the noted
associations were significant (p<0.05), all of the correlation coefficients were relatively low
(<0.49). Linear correlations between V. parahaemolyticus levels and mean turbidity (NTU)
over the previous 12 hours, pH, phosphate (PO4; mg/L), and rainfall over the previous week
(Rain; inches) were not statistically significant at a 0.05 alpha level (Table 1). Differences in
environmental variables and their correlations with V. parahaemolyticus abundance between
sampling sites were minimal.

Predictive Model
Using stepwise regression for the probability of V. parahaemolyticus presence, based initially
on minimum AIC values, the top two likelihood models were selected and compared for use in
prediction and cross validation. In comparing statistical models, the AIC estimates the quality
of each model (lower AIC value indicates higher quality), relative to each of the other models
by assessing the trade-off between model complexity and goodness of fit [47]. The top-per-
forming model (referred to as Vp1, (AIC) = 95.46) explains the probability of presence of V.
parahaemolyticus in oysters and is composed of in situ temperature and salinity. The second
best model, Vp2, (AIC) = 95.42 is composed of temperature, salinity, and chlorophyll a. Five
evaluation indices were used to test each binary model’s suitability in out-of-sample prediction
(Table 2). As model predictions are in the form of probabilities, we classified estimates as either

Table 2. V. parahaemolyticus performance metrics.

Metric Vp1 Vp2

AIC 95.46 95.42

MCC 0.33 0.46

TPR 0.37 0.52

TNR 0.91 0.91

PPV 0.56 0.64

NPV 0.83 0.86

AIC, Akaike’s Information Criterion; MCC, Matthews Correlation Coefficient; TPR, True Positive Rate; TNR,

True Negative Rate; PPV, Positive Predictive Value; NPV, Negative Predictive Value.

doi:10.1371/journal.pone.0155018.t002
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present or absent based on a 0.5 prediction point. Albeit Vp1 and Vp2 are indistinguishable
when comparing AIC values, Vp2 provides greater predictive performance, with the MCC
(0.46) for V. parahaemolyticus presence in out-of-bag model assessment. Furthermore, though
predictions of the two models were not statistically different (p<0.05), Vp2 outperformed Vp1
across all evaluation indices, not including true negative rate in which the proportions for both
models were equal (TNR = 0.91). These results indicated that the addition of chlorophyll a
improves the model’s ability to correctly classify predicted V. parahaemolyticus observations,
as well as helping to minimize Type 1 and Type 2 errors (see Table 2) for V. parahaemolyticus
likelihood prediction.

To visualize the Vp2model response, we plotted V. parahaemolyticus likelihood against
each significant model predictor (Fig 4). For mean surface water temperature for the 60 hours
prior to sampling, a significant positive correlation (R = 0.73) was observed in the out-of-bag
validation (Fig 4A). Likewise, we see a significant positive correlation (R = 0.52) between pre-
dicted V. parahaemolyticus likelihood and the mean salinity for the 72 h prior to sampling (Fig
4B). A positive correlation (R = 0.53) was found between chlorophyll a concentrations and pre-
dicted V. parahaemolyticus likelihood (Fig 4C). To assess the performance of binary classifica-
tion, predicted probability of V. parahaemolyticus presence was split into observed bacteria
presence (n = 89; mean probability = 0.45) and observed absence (n = 53; mean probabil-
ity = 0.15 (Fig 4D)).

Discussion
We present here an analysis of relationships between environmental parameters and V. para-
haemolyticus presence and concentrations in oyster samples collected from two sites in the
Great Bay Estuary over seven years.

Consistent with the results of previous studies from other locations, univariate correlation
results demonstrate significant linear associations between sea surface temperature and V.
parahaemolyticus densities in Great Bay oysters for all months [15–18,54]. In general, V. para-
haemolyticus closely follows the seasonality of temperature in the estuary, with observed
increases and decreases in concentrations as surface temperatures increased and decreased.
Not surprisingly, prior to the removal of “cold-water months” observations (October through
May), temperature is the dominant predictor of V. parahaemolyticus in the estuary, possibly
masking out any associations with other environmental parameters. Furthermore, despite the
correlation with temperature, many of the oyster samples harvested during summer months
exhibit non-detectable or low V. parahaemolyticus levels, suggesting that while dominant, sur-
face temperature may not be the only factor contributing to the abundance and frequency of V.
parahaemolyticus in the Great Bay.

The relationship between salinity and V. parahaemolyticus abundance in the Great Bay also
reflects the observations of previous studies [15,16,18,32,40,55–58] showing a significant asso-
ciation over a highly variable range of salinity samples. Due to the hydrodynamic nature of the
Great Bay, oyster samples, and synchronous environmental and water quality measurements
were taken during low tide to provide consistency in sample collection and to remove tidal
stage as a variable at the two sites. Correlation analyses indicate that, consistent with many pre-
vious studies [16,59–62], although not all [55,63,64], chlorophyll a has a significant positive
association with Vibrio spp. concentrations suggesting an association between plankton
(related to chlorophyll a concentration) and V. parahaemolyticus in the estuary. Moreover, the
addition of chlorophyll a to a V. parahaemolyticus likelihood model based previously only on
temperature and salinity, improves the accuracy for prediction of V. parahaemolyticus likeli-
hood in the Great Bay Estuary. Work currently in progress includes more research exploring
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the potential of zooplankton and phytoplankton to act as a reservoir for Vibrio spp. bacteria in
the estuarine environment.

The empirical models presented here offer an updated platform for estimating likelihood of
V. parahaemolyticus presence in the Great Bay estuary; however, we acknowledge several study
limitations. First, the limited geographical area of the study restricted the in situ data to a fairly
narrow range of high salinity values (mean: 22.3 ppt; std: 5.1), which also reflects the more

Fig 4. Plots showing the relationship between Vp2 predicted V. parahaemolyticus probability and (A) surface temperature (°C), (B) salinity (ppt), and
(C) chlorophyll a concentration (mg/l). Linear trend lines denoted by solid black line. Performance of Vp2 binary classification presented as a boxplot
comparing observed presence and absence with modeled probability (D).

doi:10.1371/journal.pone.0155018.g004
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saline conditions that are typical of warmer water conditions in the estuary. Due to the nature
of the training data, extension of the model to less saline regions of the estuary, and/or to other
coastal systems may require modification of the modeling approach, otherwise, the existing
model could lead to increased prediction error. Secondly, for the purpose of model training
and data display, outliers falling outside the interquartile range are excluded from the current
model database. The dramatic intra-annual variability observed in V. parahaemolyticus con-
centrations in Great Bay oysters during the summer is also notable. Rapid growth rates and
strain diversity, especially evident during warmer months [60], provides vibrios with a greater
capacity to respond to favorable environmental conditions than during cold-water months.

We recognize that determining risk associated with consuming shellfish based on total V.
parahaemolyticus concentrations may not be the best approach. Tracking tdh and/or trh
genetic markers have been useful for estimating the presence of potentially pathogenic strains
within total Vp populations, but these are not always associated with clinical cases [1,25].
These markers are also associated with a variety of Vp strains that may vary in virulence or
environmental fitness. The best approach is to track pathogenic strains, and progress is being
made in the Northeast United States in that regard to define regionally significant pathogenic
strains [25,27]. As existing guidance levels for risk are based on total V. parahaemolyticus con-
centrations [28,29], our approach assists in determining when environmental conditions are
favorable for V. parahaemolyticus presence. To explore the response and sensitivity of bacterial
concentration to varying environmental conditions and geographic domains, work in progress
includes employment and evaluation of region-specific empirical models for the prediction of
V. parahaemolyticus abundance.

In summary, the current study examines the relationship between V. parahaemolyticus in
oysters and various independent environmental parameters in the Great Bay Estuary. Strong
predictive relationships were established to which we developed empirical models for the likeli-
hood of V. parahaemolyticus presence. The work builds upon existing findings from other
coastal regions by extending predictive modeling for Vibrio spp. bacteria into the Northeast
United States. Results of this study confirm that inclusion of chlorophyll a concentration into a
model otherwise employing only temperature and salinity, offers improved predictive capabil-
ity for modeling the likelihood of V. parahaemolyticus in the Great Bay Estuary. Ongoing
efforts to improve the understanding of region-specific conditions that can be used to inform
risk models will be enhanced with similar small-scale modeling efforts in the Northeast that
identify what may be area-specific environmental variables associated with V. parahaemolyti-
cus presence and concentrations. Application of this approach to areas in New England where
pathogenic V. parahaemolyticus strains are present and data of their detection [27] is generated
will be useful to ongoing efforts by federal agencies to develop forecasting capacity.
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